

Abstract

We propose a novel formulation for the scene labeling problem which is able to combine object detections with pixel-level information in a Conditional Random Field (CRF) framework. Since object detection and multi-class image labeling are mutually informative problems, pixel-wise segmentation can benefit from powerful object detectors and vice versa. The main contribution of the current work lies in the incorporation of top-down object segmentations as generalized robust P^N potentials into the CRF formulation. These potentials present a principled manner to convey soft object segmentations into a unified energy minimization framework, enabling joint optimization and thus mutual benefit for both problems. As our results show, the proposed approach outperforms the state-of-theart methods on the categories for which object detections are available. Quantitative and qualitative experiments show the effectiveness of the proposed method.

CRF Formulation for Multi-Class Image Labeling

Energy of the CRF

$$E(\mathrm{y}) = \sum_{i \in V} \psi_i(y_i) + \sum_{(i,j) \in E} \psi_{ij}(y_i,y_j) + \sum_{c \in \mathcal{S}} \psi_c(\mathrm{y}_c) \mid_{\psi_i(y_i)}$$

Potentials:

Unary potentials: $\psi_i(y_i)$.

Pairwise potentials: $\psi_{ij}(y_i, y_j)$.

Higher order potentials: $\psi_c(y_c)$.

Higher order potentials come in the form of robust $oldsymbol{P}^N$ potentials

$$\psi_c(\mathrm{y}_c) = egin{cases} N_i(\mathrm{y}_c)rac{1}{Q}\gamma_{max} & ext{if } N_i(\mathrm{y}_c) \leq Q, \ \gamma_{max} & ext{otherwise }. \end{cases}$$

Segment proposals are created using unsupervised mean-shift segmentations. Higher order potentials capture the fine contour details better than pairwise potentials yielding impressive results for *stuff* classes.

Recently, [3] proposed to add object detections as a higher order potential $(u, H, L) = \min(-f(v_d, H_d)x_d + g(N_d, H_d)x_d).$

$$\psi_d(\mathrm{y}_d, H_d, l_d) = \min_{x_d \in \{0,1\}} (-f(\mathrm{y}_d, H_d) x_d + g(N_d, H_d))$$

where

 $f(\mathrm{y}_d,H_d)=w_d|\mathrm{y}_d|\max\left(0,H_d-H_t
ight)$ $g(N_d,H_d)=rac{w_d}{p_d}\max{(0,H_d-H_t)N_d}$, H_d is the detection score and H_t is the detection threshold.

Suboptimal Object Detection Integration

The integration of the object detections in [3] is not optimal:

GrabCut provides hard segmentations without considering **object-specific** nor **context** information.

CRF optimization cannot compensate for errors made during GrabCut segmentation, since only the number of consistent pixel matters and not their **importance**.

GrabCut failure case

Recult from [2]

Ultra High-Speed Mobile Information and Communication

Multi-Class Image Labeling with Top-Down Segmentation and Generalized Robust P^N Potentials

Georgios Floros, Konstantinos Rematas, Bastian Leibe

UMIC Research Centre, RWTH-Aachen University, Germany

Main Ideas

Integrate object detections as soft class-specific top-down segmentations. Joint optimization of the multi-class image labeling problem and the object existence in a single CRF framework.

The importance of each pixel inside the object segmentation should be considered.

Class-specific Top-down Segmentation

ISM formalism on top of a dense Hough Forest classifier to obtain top-down information.

Each vote v_j contributing to a Hough space maximum h is backprojected to its originating patch **P** augmented with a local figure-ground label patch $Seg(v_i)$.

Generalized Robust P^N Potentials

Generalized robust P^N potentials take the form:

$\psi_c(\mathrm{y}_c)\!=\!\min\!\left\{\min_{k\in\mathcal{L}}((P-f_k(\mathrm{y}_c)$
The parameters $oldsymbol{P}$ and functions $oldsymbol{f}_k(\mathrm{y}_c)$ are defined a
$P=\sum_{i\in c}w_{i}^{k}, \ \ orall$
$f_k(\mathrm{y}_c) = \sum_{i\in c}^{\iota\in c} w_i^k \delta_k(y)$
$\delta_k(y_i) = egin{cases} i\in y_i = \ 1 & ext{if } y_i = \ 1 & ex$

We propose the use of p_{fig} as a weight w_i^k in the above formulation. A high figure probability for a pixel will yield a higher cost in the case that it takes a label different from the object's.

 $\psi_c(\mathbf{y}_c)$

Our racul

$$_i)$$

K,

0 otherwise,

Results

Camvid dataset

10 min of high quality 30 Hz footage at 960x720 pixel resolution. 367 training and 233 test images with 11 semantic classes. Quantitative results

	Building	Tree	Sky	Car	Sign-Symbol	Road	Pedestrian	Fence	Column-Pole	Sidewalk	Bicyclist	Global	Average
Recall													
[1] (SfM)	46.2	61.9	89.7	68.6	42.9	89.5	53.6	46.6	0.7	60.5	22.5	69.1	53.0
[2] (SfM)	84.5	72.6	97.5	72.7	34.1	95.3	34.2	45.7	8.1	77.6	28.5	83.8	59.2
[3] (no det.)	79.3	76.0	96.2	74.6	43.2	94.0	40.4	47.0	14.6	81.2	31.1	83.1	61.6
[3] (det.)	81.5	76.6	96.2	78.7	40.2	93.9	43.0	47.6	14.3	81.5	33.9	83.8	62.5
Baseline [3]	79.0	75.2	95.7	74.1	20.2	93.7	39.7	46.7	8.3	78.1	18.3	82.3	57.2
Ours	80.4	76.1	96.1	86.7	20.4	95.1	47.1	47.3	8.3	79.1	19.5	83.2	59.6

Conclusion

Novel framework for combining object detections with a CRF framework. Top-down soft object segmentations on the pixel-level enable a single energy optimization. Improved performance on object classes with available detections.

References

[1] G.J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Segmentation and recognition using structure from motion point clouds. In ECCV, 2008. [2] P. Sturgess, K. Alahari, L. Ladicky, and P. Torr. Combining appearance and structure from motion features for road scene understanding. In BMVC, 2009. [3] L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. Torr. What, Where and How Many? Combining Object Detectors and CRFs. In ECCV, 2010.

http://www.mmp.rwth-aachen.de floros@umic.rwth-aachen.de